翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

additive category : ウィキペディア英語版
additive category

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.
== Definition ==

A category C is preadditive if all its hom-sets are Abelian groups and composition of morphisms is bilinear; in other words, C is enriched over the monoidal category of Abelian groups.
In a preadditive category, every finitary product (including the empty product, i.e., a final object) is necessarily a coproduct (or initial object in the case of an empty diagram), and hence a biproduct, and conversely every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it).
Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts.
Another, yet equivalent, way to define an additive category is a category (not assumed to be preadditive) which has a zero object, finite coproducts and finite products and such that the canonical map from the coproduct to the product
:X \coprod Y \to X \prod Y
is an isomorphism. This isomorphism can be used to equip \mathrm(X,Y) with a commutative monoid structure. The last requirement is that this is in fact an abelian group. Unlike the afore-mentioned definitions, this definition does not need the auxiliary additive group structure on the Hom sets as a datum, but rather as a property.〔Jacob Lurie: ''Higher Algebra'', Definition 1.1.2.1, http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf〕
Note that the empty biproduct is necessarily a zero object in the category, and a category admitting all finitary biproducts is often called semiadditive. As shown below, every semiadditive category has a natural addition, and so we can alternatively define an additive category to be a semiadditive category having the property that every morphism has an additive inverse.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「additive category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.